Secondary Analysis of Clinical Trials Data – A Biostatistician’s Experience

Gui-shuang Ying, PhD

Center for Preventive Ophthalmology and Biostatistics
Perelman School of Medicine
University of Pennsylvania
In clinical trials, numerous data collection activities and resources were invested.

Rich data from clinical trials provide unique, cost-effective opportunities for the secondary data analyses.

Secondary analyses of clinical trials data are common and strongly encouraged.

- Can advance medical science or improve patient care.
Increasing Opportunities for Secondary Analysis of Data

- The data sharing enforced by NIH policy for NIH-funded clinical trials
- NIH R21 funding to support secondary data analysis
- Clinical trial data from pharmaceutical companies can be requested through ClinicalStudyDataRequest.com
- The International Committee of Medical Journal Editors (ICMJE) proposes to require authors to share others the de-identified individual data for the clinical trial results presented in the article Taichman DB et al. Sharing Clinical Trial Data. JAMA 2016;315:467-8.
Use of Secondary Data Analysis

- To assess predictors for treatment responses
- Subgroups analyses of treatment efficacy or safety
- To describe natural history of disease (use control arm data)
- To perform patient-level meta-analysis
- To plan for new similar clinical trial (sample size, primary outcome, duration of follow-up)
- To develop and test new hypotheses
- To develop new statistical methodologies
Challenges of Secondary Analysis

- Large and complicated data
 - Modifications in data forms and protocol
 - Data from sub-study and ancillary study
 - Different versions of data
 - Outcome measures from different sources
- Biostatistician may not be familiar to data and study protocol
- Clinical investigators may not be aware of complexity of data
Comparison of Age-related Macular Degeneration Treatments Trials (CATT)

- NIH-funded trial to compare two drugs and two dosing regimens for their relative efficacy and safety of treatment of neovascular AMD with:
 1) Lucentis® on a fixed schedule (every 4 weeks)
 2) Avastin® on a fixed schedule (every 4 weeks)
 3) Lucentis® on a variable* dosing schedule
 4) Avastin® on a variable* dosing schedule
CATT Design

Baseline (N=1185) Year 1 Year 2

Lucentis Monthly

Avastin Monthly

Lucentis PRN

Avastin PRN

Retreat if fluid on OCT or other signs of active CNV

Primary Endpoint

Final visit

(Columns: Months)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
CATT Primary Results

- Lucentis and Avastin are equivalent on their efficacy when treated Monthly or PRN.

CATT Research Group. NEJM 2011;364:1897-908
Secondary Analysis of CATT Data

- Published 30+ secondary papers from CATT data in top ophthalmology journals
- Most papers were led by CATT Investigators and Data Coordinating Center (DCC)
- Biostatisticians in DCC performed all statistical analyses supported by original grant and a R21 grant
- Most of the findings from the secondary analyses were verified by the other similar trials in other countries
- CATT is a good example of secondary data analyses of a large NIH-funded trial
Topics of CATT Secondary Analyses

- Baseline predictors of vision outcomes
- Risk factors of morphological outcomes
- Associations of morphological outcomes and vision outcomes
- Phenotype and genotype association
- Genetic factors for association with treatment response
- Incidence and risk factors of late AMD in the fellow eye
- Papers from additional grading of new features in OCT images or fundus photographs
Case #1: Good Use of CATT data

- There are 3 effective anti-VEGF agents (Lucentis, Avastin, Eyelea) for treating neovascular AMD.
- When a patient seems not respond to an anti-VEGF drug, clinicians attempt to switch to another anti-VEGF drug (in particular Eyelea).
- MANY uncontrolled studies have investigated the effect of switching from Avastin or Lucentis to Eyelea and concluded benefits from switching on vision and morphological outcome.
Case #1: Switching Effect in Non-controlled Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>VA change after switching</th>
<th>Retinal Thickness Change after switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yonekawa et al (2013)</td>
<td>132</td>
<td>Gained 3 Letters (p=0.25)</td>
<td>Decreased 30 u (p<0.0001)</td>
</tr>
<tr>
<td>Cho et al (2013)</td>
<td>353</td>
<td>Loss 2 letters (p=0.49)</td>
<td>Decreased 21 u (p=0.008)</td>
</tr>
<tr>
<td>Eadie et al (2014)</td>
<td>111</td>
<td>Loss 1 letter (p=0.84)</td>
<td>Decreased 52 u (p=0.001)</td>
</tr>
<tr>
<td>Ehlken et al (2014)</td>
<td>114</td>
<td>gained 3 letters (p<0.0001)</td>
<td>Decreased 66 u (p=0.008)</td>
</tr>
<tr>
<td>Moisseiev et al (2015)</td>
<td>114</td>
<td>Loss 2 letters (p>0.05)</td>
<td>Decrease 22 u (p=0.003)</td>
</tr>
</tbody>
</table>
Case #1: Good Use of CATT data

- Can we believe benefits are really from switching?
- Without a parallel control group, can the improvements in vision or morphological outcome due to the natural change of the disease or the phenomenon of regression to mean?
- What happen if these eyes continued to be treated using the same drug without switching?
Case #1: Good Use of CATT data

- Secondary data analysis of CATT data from the patients who were randomized to monthly treatment may help to show the effect of continuous treatment of the same drug.

- Use the same “switching” criteria that most papers used:
 - Already received 3 monthly anti-VEGF treatment (i.e., baseline, week 4, week 8)
 - VA 20/40 or worse at week 12
 - No more than 5 letters gain from baseline
 - Persistent fluid at the foveal center
Case #1: Good Use of CATT data

- Total 126 patients met the “switching” criteria at week 12
- The VA change from week 12 at 1 year is 2.8 letters (p=0.050)
- The thickness change from week 12 at 1 year is -52 um (p<0.0001)

Case #1: Good Use of CATT data

- The primary limitations of switching studies are:
 - Lack of a control group of similar patients who were not switched
 - The implicit assumption that outcome would not change with continuing use of the same drug

- Our secondary analysis demonstrated the importance of a control group
Case #2: Meta-Analysis of Safety Data

- In CATT, we found the SAE rate was higher in patients treated with Avastin than Lucentis (adjusted RR=1.28; \(P=0.009 \))

- The 5 similar Lucentis-Avastin trials in other countries did not find increased risk of SAE associated with Avastin

- The individual patient-level meta-analysis was proposed to compare the SAE between Avastin and Lucentis to account for the possible unbalance in baseline characteristics between two drugs
Case #2: Meta-Analysis of Safety Data

- We made the data request to every study Chair or DCC PI for:
 - demographic and medical history (9 variables), drug group, dosing regimen, follow-up length
 - SAE information (MedDRA code, days since enrollment)
- Several requests to receive the data from 4 studies
- In one study, we could not obtain the patient-level data even after all possible approaches (emails, FedEx, face-to-face meeting with PI)
Case #2: Meta-Analysis of Safety Data

<table>
<thead>
<tr>
<th>Studies</th>
<th>Estimate (95% C.I.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAMD</td>
<td>1.34 (0.79, 2.28)</td>
</tr>
<tr>
<td>CATT</td>
<td>1.28 (1.06, 1.55)</td>
</tr>
<tr>
<td>GEFAL</td>
<td>1.15 (0.67, 1.98)</td>
</tr>
<tr>
<td>IVAN</td>
<td>1.04 (0.76, 1.42)</td>
</tr>
<tr>
<td>LUCAS</td>
<td>0.57 (0.35, 0.91)</td>
</tr>
<tr>
<td>MANTA</td>
<td>1.34 (0.71, 2.54)</td>
</tr>
</tbody>
</table>

Overall (I^2=52%, P=0.06) 1.09 (0.88, 1.35)

Relative Risk (log scale)
Case #2: Meta-Analysis of Safety Data

What we learned from this meta-analysis of 6 Lucentis-Avastin studies are:

- Took much more time than expected to receive data
- Many communications are needed
- Data are collected and coded in different ways across studies
- Some inconsistencies between the final data received and published data
Case #3: Inappropriate Use of CATT data

- CATT data were made public available at https://rt4.cceb.med.upenn.edu/catt/catt_index.php

- In 2015 Annual meeting of the Association for Research in Vision and Ophthalmology (ARVO), a group of non-CATT investigators presented results from a secondary analysis of CATT data

- The number of anti-VEGF injections were negatively associated with incidence of geographic atrophy
Case #3: Inappropriate Use of CATT data

- Their results contradict to our previous CATT results: patients in monthly groups had higher rate of developing geographic atrophy than patient in PRN groups

Grunwald JE, Ophthalmology 2014;121:150-61
Case #3: Inappropriate Use of CATT Data

- We found the secondary analyses were done inappropriately
 - Evaluating the association of post-treatment variable (total number of injections) with outcome is problematic
 - Mis-interpreted results
 - Not aware of the sub-study data

- One day before ARVO poster presentation, the first-author shared the results with CATT Study Chair

- In the end, the first-author did not show up for the poster
Recommendation

- Check with DCC to find whether the secondary data analyses have been done or in progress
- Biostatistician should work closely with clinicians to develop scientific questions for the secondary analysis meaningful
- Clear definition of inclusion/exclusion criteria and key outcomes
- Biostatistician should replicate numbers for key outcomes published in main papers before working on proposed secondary analyses
Cautions in Secondary Analysis

- Subgroup analysis in clinical trials – fun to look at, but don’t believe it
- Unconfirmed subgroup analyses can lead to premature translation to practice with subsequent harm to patient
- Results from secondary analysis should wait for the confirmation by the adequately powered trial.
- Results may not represent the general population as restricted by the study eligibility criteria.
Conclusions

- Enormous opportunities for secondary analyses of clinical trials data
- Biostatistician should work closely with clinicians for developing secondary analysis plan and perform careful statistical analysis
- Appropriate secondary analyses may provide useful information for clinical research and clinical care
NEI/NIH, DHHS grants: U10 EY017823; U10 EY017825; U10 EY017826; U10 EY017828, and R21EY023689