Futility analysis considerations for a phase II trial with short term non-inferiority and long term superiority co-primary endpoints

Samantha Hinsley, Sarah Brown
Leeds Institute of Clinical Trials Research, University of Leeds, UK

SCT 37th Annual Meeting
15th – 18th May 2016
Futility analyses

• Stop if, based on the current data, we are unlikely to observe a significant result at the end of the trial

• Improve efficiency

• Reduce number of patients recruited

• Reduce number treated with ineffective regimens
MUK five trial design

Co-primary endpoints:

Proportion of patients achieving ≥VGPR 24-weeks post initial randomisation
- KCD vs. VCD
- Non-inferiority

Progression-free survival
- Maint vs. no maint
- Superiority
Sample size

- Initial randomisation
 - N=300

- VCD
 - N=100
 - No maintenance
 - N=100

- KCD
 - N=200
 - Maintenance randomisation
 - N=140 (min)

 - Maintenance with Krypolis
 - N=70 (min)

 - No maintenance
 - N=70 (min)

- VCD: ≥VGPR rate of 35%
- KCD: ≥VGPR rate of 45%
 - (10% improvement)
- NI margin of 5%
- 1:2 randomisation
- α=0.05 (1 sided), power=80%
Sample size

- VCD: ≥VGPR rate of 35%
- KCD: ≥VGPR rate of 45% (10% improvement)
- NI margin of 5%
- 1:2 randomisation
- α=0.05 (1 sided), power=80%

- PFS measured from maintain randomisation
- No maint: median PFS 12m
- HR=0.67 (increase 6m in median PFS)
- α=0.2 (2 sided), power=80%
MUK five futility analysis considerations

• Analysis methods based on short term co-primary endpoint

 Proportion of patients achieving \geqVGPR
 24-weeks post initial randomisation

• After 50% of patients (150) have reached the time-point

Options considered:

• Conditional power

• Conditional power only if treatment difference \leq10%
 (Difference of 10% anticipated / powered)

• No futility analysis, with the option of an inferiority analysis
 (As safety is a key driver)
Conditional power

The power to show non-inferiority at the final analysis (under different assumptions on the remaining patients) given the current data.

Perform simulations to estimate the number of ≥VGPRs at the final analysis under different scenarios:

• Generate data to represent remaining patients
• Combine simulated patients with current 150 patients and calculate treatment difference and confidence interval

Repeat & combine results to find conditional power:

➢ Percentage of simulations that have demonstrated non-inferiority
Conditional power – simulation scenarios

NO TREATMENT DIFFERENCE
• ≥VGPR rate of 35% with both KCD and VCD

AS POWERED FOR
• 10% difference: ≥VGPR rate of 45% with KCD and 35% with VCD

OPTIMISTIC (‘best case’ scenario)
• Calculate 95% CI of difference seen in first 150 patients
• Use upper limit for difference to simulate under, assuming ≥VGPR rate for VCD as seen in first 150 patients
Conditional power – simulation scenarios

OPTIMISTIC – Example

• Calculate 95% CI of difference seen in first 150 patients
 VCD: 36% (18/50 patients) ≥VGPR
 KCD: 50% (50/100 patients) ≥VGPR
 Difference: 50-36=14%, with 95% CI (-2.5%, 30.5%)

• Use upper limit for difference to simulate under, assuming ≥VGPR rate for VCD as seen in first 150 patients
 Assumptions for simulations of remaining patients:
 VCD: 36% as observed
 KCD: 36+30.5=66.5% using upper limit of 95% CI
Choosing a method

- Choice depends on how the two co-primary endpoints interact
- Maintenance question still relevant if KCD not non-inferior
 - No futility analysis to be performed
- Not relevant if KCD inferior
 - Inferiority interim analysis to be performed

Reminder: not non-inferior ≠ inferior
Conclusions

• Conditional power provides a useful way to consider futility analyses for non-inferiority endpoints

• With co-primary endpoints, the use of a futility analysis requires more thought

• Depends on the interaction of the endpoints

• With a short-term and long-term endpoint combination, the relevance of the long-term endpoint needs to be considered