Application of a Bayesian approach to treatment selection in a rare disease sub-population

Samantha Hinsley, Duncan Wilson, Walter Gregory, Sarah Brown
Leeds Institute of Clinical Trials Research, University of Leeds, UK

SCT 37th Annual Meeting
15th – 18th May 2016
High risk multiple myeloma (HRMM)

• Multiple myeloma (MM) is a cancer that develops from cells in the bone marrow
 ~ 4500 new cases each year in the UK

• High risk = certain genetic factors associated with poor outcomes
 20-30% of MM
 Rare sub-population

• Standard treatment in newly diagnosed MM varies by practice

• Large phase III trial (Myeloma XI+) is currently evaluating treatment strategies

• Limited data available for HRMM sub-population
Designing the trial – challenges

Aim: assess whether we can improve outcomes for HRMM patients by selecting the optimum treatment strategy to take to phase III

- Rare patient population
 3 arm phase II: n~450 HRMM (~2500 MM)

- Variable standard treatment

- Differing treatment approaches requiring multiple endpoint evaluation
 Deliverability of treatment also important due to intense treatment in one arm
Designing the trial – overcoming the challenges

- Treatment selection based on multiple outcomes and multiple interim assessments for futility
- Using data from Myeloma IX/XI+ to provide almost concurrent control data

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Overcome?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rare patient population</td>
<td>✓ Efficient in terms of sample size (n=120)</td>
</tr>
<tr>
<td>Variable standard treatment</td>
<td>✓ ‘Standard’ control arm as up to date as possible</td>
</tr>
<tr>
<td>Differing treatment approaches requiring multiple endpoint evaluation</td>
<td>✓ Can incorporate multiple endpoints</td>
</tr>
</tbody>
</table>
Trial overview

Arm A
- Recruit 10 patients, perform interim assessment
- Stopping boundary crossed?
 - **YES**
 - DROP ARM
 - Recruit remaining patients to Arm B
 - **NO**

Arm B
- Recruit 10 patients, perform interim assessment
- Stopping boundary crossed?
 - **YES**
 - DROP ARM
 - Recruit remaining patients to Arm A
 - **NO**

Total n=120
STOP TRIAL
Final analysis
Endpoints

Interim analyses for futility
After every 10 patients reach 12 months post-rand
• Progression-free survival @ 12m post-rand
• Deliverability of treatment
• Minimal residual disease (MRD)
 • The small number of cancer cells remaining
 • Known to cause relapse

Final analysis
Compare each treatment arm to control prior
Compare two experimental treatment arms
• Progression-free survival at 18 months post-rand
Implementing the design

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Progression-free at 12m</th>
<th>Prog / died by 12m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MRD +ve</td>
<td>MRD –ve</td>
</tr>
<tr>
<td>y</td>
<td>A1 + A9</td>
<td>A2 + A10</td>
</tr>
<tr>
<td>n</td>
<td>A4 + A12</td>
<td>A5 + A13</td>
</tr>
</tbody>
</table>

A7, …, A14 = progressed or died by 18m

- Count data modelled using Dirichlet priors
 - Control data from MyeIX (later to be updated to MyeXI+):
 \[\text{Dir}(14, 29, 30, 15, 0, 0, 10, 50, 15, 18, 19, 13, 0, 0)\]
 - Experimental priors:
 \[a_1 + \ldots + a_{14} = 14, \text{ following the “flat prior” method suggested by Thall and Sung}\]
Implementing the design

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Progression-free at 12m</th>
<th>Prog / died by 12m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MRD +ve</td>
<td>MRD –ve</td>
</tr>
<tr>
<td>y</td>
<td>A1 + A9</td>
<td>A2 + A10</td>
</tr>
<tr>
<td>n</td>
<td>A4 + A12</td>
<td>A5 + A13</td>
</tr>
</tbody>
</table>

- Count data modelled using Dirichlet priors
 - Control data from MyelIX (later to be updated to MyelXI+): Dir(14, 29, 30, 15, 0, 0, 10, 50, 15, 18, 19, 13, 0, 0)

- Experimental priors:
 \[a_1 + \ldots + a_{14} = 14, \text{ following the “flat prior” method suggested by Thall and Sung} \]
Implementing the design

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Progression-free at 12m</th>
<th>Prog / died by 12m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MRD +ve</td>
<td>MRD –ve</td>
</tr>
<tr>
<td>y</td>
<td>A1 + A9</td>
<td>A2 + A10</td>
</tr>
<tr>
<td>n</td>
<td>A4 + A12</td>
<td>A5 + A13</td>
</tr>
</tbody>
</table>

A7, ..., A14 = progressed or died by 18m

- Data monitored according to endpoints
 - Compound events follow Beta distribution
 - Monitor via posterior probability
Stopping rules

Interim analyses:
• $P(\text{MRD }-\text{ve rate } > \text{control rate } + 10\%) < 0.05$
• $P(\text{Non-deliverability } > \text{control rate } + 20\%) > 0.9$
• $P(\text{Proportion progressed/died @ 12m post-rand } > \text{control rate}) > 0.9$

Final analysis:
• $P(\text{Proportion alive and progression-free at 18 months post-registration } > \text{control rate}) < 0.85$

Converted to stopping boundaries, e.g.
“At the first interim assessment, if the number of participants who are MRD negative is 1 or less (out of 10), stop for futility.”
Design performance

- Simulations performed to determine operating characteristics
- Check sample size large enough
- Assess probability of early stopping, π, under various scenarios
- Under null scenario (no change from control), $1-\pi$ is equivalent to α

 5.27% in MUK nine with n=120
Summary / final thoughts

• Flexible design
 • Multiple endpoints
 • Complex data structure / interaction between endpoints
 • Updating control prior when additional data available

• MUK nine design now changed to 1 experimental arm
 • Remove deliverability endpoint (removed intense arm)
 • Re-evaluate simulations
 • Flexibility allows us to incorporate a new arm at a later date (if the opportunity arises!)

• Software freely available
 • Not all of the above are incorporated
 • R package being developed
References

s.hinsley@leeds.ac.uk