Ethical tension in placebo-controlled randomized trials for cancer: a review of recently published trials

Adélaïde Doussau
Department of Bioethics, Clinical Center
National Institutes of Health
Disclaimer

The views expressed are the author’s own. They do not represent the position or policy of the National Institutes of Health, U.S. Public Health Service, or the Department of Health and Human Services.
Introduction: Cancer and Placebo

- Until recently placebo not used in cancer trials
 - No placebo effect / chemotherapy ➔ not necessary?
 - Prognosis ➔ unethical?
 - Challenge with molecularly targeted agents
 • Efficacy: Stable disease
 • Long term, costs

- Placebo outcomes
 - Symptom control
 • 0-27% per trial
 - Tumor response (ORR, WHO)
 • 0-7% per trial, 11 patients (2.4%)
 - Stable disease
 • 52% of trials

37 placebo RCT
1977-1997
(Chvetzoff and Tannock JNCI 2003)

40 placebo RCT - Molecularly targeted agents
1977-2012
(LeTourneau, Paoletti at al. JCO 2013)
Introduction

- Placebo-controlled randomized trials (P-RCT)
 - Necessary / desirable for cancer
 - “Placebo-only” 1:1 trial
 - Might not be feasible
 - Scientific, practical, ethical reasons
 - Some alternative strategies are proposed
 (ICH E10, 2000; Daugherty CK, et al. JCO, 2008)

Objective

Describe the frequency of “alternative” strategies for randomized placebo-controlled trials for cancer

Review of published P-RCT
Methods

- Sample of cancer P-RCT, 2014
 - Pubmed/Medline (October 2014)
 - Cancer [Tiab] and Placebo [Tiab]
 - Randomized Controlled Trial [Ptype]

 - Inclusion criteria
 - P-RCT, evaluating clinical endpoints

 - Exclusion criteria
 - Protocol without results
 - Secondary analysis
Alternative strategies using placebo (1)

- “Add-on” placebo controlled trial
 - If proved active standard treatment (A)
 - A + E (experimental) vs. A + Placebo of E

- As opposed to placebo “only” trials
 - E vs. Placebo of E
 - Salvage therapy
 - After failure to standard therapy
Alternative strategies using placebo (2)

- Additional control groups
 - Dose-finding
 - Factorial design

- Early escape / rescue treatment
 - Access E upon progression
 - “one-way crossover”

- Randomized maintenance

- Unbalanced randomization (ratio 2:1…)

- Stopping rules

Doussau A. SCT Conference 2015
Alternative strategies using placebo (2)

- Additional control groups
 - Dose-finding
 - Factorial design

- Early escape / rescue treatment
 - Access experimental treatment upon progression
 - “one-way crossover”

- Randomized maintenance
- Unbalanced randomization (ratio 2:1…)

- Stopping rules

Decrease exposure to placebo
Results: 53 eligible trials

91 abstracts

38 excluded

Efficacy of anticancer intervention 29

Prevention of adverse effects 24

29 “Treatment” P-RCT

- 20 Phase III (69%), 9 phase II
- Molecularly targeted agents 16
- Cancer
 - Lung 7
 - Prostate 5
 - Breast 3
 - Other: pancreas, ovary, urothelial, liver, uterus, gastric, oesophagus, brain, neuroendocrine, thyroid

24 “Symptom” P-RCT

- Symptom
 - Urogenital 5
 - Neuropathy 4
 - Gastrointestinal 3
 - Bone 3
 - Other: fatigue, pain, metabolic, surgical complication

Not cancer / healthy volunteers 13
Subgroup analysis/Reanalysis 16
No clinical endpoint or results 4
No design information 2
Doubloon 1
Animal 1
Results: 53 eligible trials

- 91 abstracts
- 38 excluded

- 29 “Treatment” P-RCT
 - 20 Phase III (69%), 9 phase II
 - Molecularly targeted agents 16
 - Cancer
 - Lung 7
 - Prostate 5
 - Breast 3
 - Other: pancreas, ovary, urothelial, liver, uterus, gastric, oesophagus, brain, neuroendocrine, thyroid

- 24 “Symptom” P-RCT
 - Symptom
 - Urogenital 5
 - Neuropathy 4
 - Gastrointestinal 3
 - Bone 3
 - Other: fatigue, pain, metabolic, surgical complication

- Not cancer / healthy volunteers 13
- Subgroup analysis/Reanalysis 16
- No clinical endpoint or results 4
- No design information 2
- Doubloon 1
- Animal 1
Results (2) Design in 29 “Treatment” P-RCT

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative strategy (any)</td>
<td>27</td>
<td>93.1</td>
</tr>
<tr>
<td>Add-on</td>
<td>20</td>
<td>69.0</td>
</tr>
</tbody>
</table>
Results (2) Design in 29 “Treatment” P-RCT

<table>
<thead>
<tr>
<th>Alternative strategy (any)</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add-on</td>
<td>27</td>
<td>93.1</td>
</tr>
<tr>
<td>Stopping rule</td>
<td>15</td>
<td>51.7</td>
</tr>
<tr>
<td>Unbalanced randomization</td>
<td>5</td>
<td>17.2</td>
</tr>
<tr>
<td>"Cross-over"</td>
<td>5</td>
<td>17.2</td>
</tr>
<tr>
<td>Maintenance</td>
<td>2</td>
<td>6.8</td>
</tr>
<tr>
<td>Factorial</td>
<td>1</td>
<td>3.4</td>
</tr>
<tr>
<td>Dose-finding</td>
<td>1</td>
<td>3.4</td>
</tr>
</tbody>
</table>

9 “placebo only”
Placebo “only” RCT, no alternative design

<table>
<thead>
<tr>
<th>Cancer</th>
<th>Clinical Setting</th>
<th>Treatment</th>
<th>Primary Endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervix</td>
<td>Low grade intraepithelial neoplasia (CIN1) HPV+</td>
<td>Green tea*</td>
<td>CIN1 and HPV clearance</td>
</tr>
<tr>
<td>Esophagus</td>
<td>Advanced Failure to chemotherapy</td>
<td>Gefitinib</td>
<td>Survival</td>
</tr>
</tbody>
</table>

*phase II. OS overall survival.
Placebo “only” RCT, alternative strategies

<table>
<thead>
<tr>
<th>Cancer</th>
<th>Clinical Setting</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urothelial</td>
<td>Advanced Responders to chemo.</td>
<td>Sunitinib*</td>
</tr>
<tr>
<td>Lung</td>
<td>Unresectable Responders to radiochemo.</td>
<td>Tecemotide</td>
</tr>
</tbody>
</table>

phase II. SD stable disease, OR objective response, OS overall survival, PFS progression free survival.
Placebo “only” RCT, alternative strategies

<table>
<thead>
<tr>
<th>Cancer</th>
<th>Clinical Setting</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urothelial</td>
<td>Advanced Responders to chemo.</td>
<td>Sunitinib*</td>
</tr>
<tr>
<td>Lung</td>
<td>Unresectable Responders to radiochemo.</td>
<td>Tecemotide</td>
</tr>
<tr>
<td>Gastric</td>
<td>Advanced, Failure to chemo.</td>
<td>Ramucimimumab</td>
</tr>
<tr>
<td>Liver</td>
<td>Advanced, Failure to sorafenib</td>
<td>Everolimus</td>
</tr>
<tr>
<td>Thyroid</td>
<td>Advanced/metastatic Refractory</td>
<td>Sorafenib</td>
</tr>
<tr>
<td>Enteropancreatic</td>
<td>Advanced</td>
<td>Lanreotide</td>
</tr>
<tr>
<td>Oral carcinoma</td>
<td>Unresectable</td>
<td>Recombinant adenoviral gene</td>
</tr>
</tbody>
</table>

*phase II. SD stable disease, OR objective response, OS overall survival, PFS progression free survival.
Placebo “only” RCT, alternative strategies

<table>
<thead>
<tr>
<th>Cancer</th>
<th>Clinical Setting</th>
<th>Treatment</th>
<th>Design strategy</th>
<th>Primary Endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urothelial</td>
<td>Advanced Responders to chemo.</td>
<td>Sunitinib*</td>
<td>Maintenance Crossover</td>
<td>Progression</td>
</tr>
<tr>
<td>Lung</td>
<td>Unresectable Responders to radiochemo.</td>
<td>Tecemotide</td>
<td>Maintenance 2:1 Stop Rule</td>
<td>Survival</td>
</tr>
<tr>
<td>Gastric</td>
<td>Advanced, Failure to chemo.</td>
<td>Ramucimimumab</td>
<td>2:1 Stop Rule</td>
<td>Survival</td>
</tr>
<tr>
<td>Liver</td>
<td>Advanced, Failure to sorafenib</td>
<td>Everolimus</td>
<td>2:1 Stop Rule</td>
<td>Survival</td>
</tr>
<tr>
<td>Thyroid</td>
<td>Advanced/metastatic Refractory</td>
<td>Sorafenib</td>
<td>Crossover</td>
<td>Progression</td>
</tr>
<tr>
<td>Entero-pancreatic</td>
<td>Advanced</td>
<td>Lanreotide</td>
<td>Crossover</td>
<td>Progression</td>
</tr>
<tr>
<td>Oral carcinoma</td>
<td>Unresectable</td>
<td>Recombinant adenoviral gene</td>
<td>3-arm factorial 1:1:1</td>
<td>Response Survival</td>
</tr>
</tbody>
</table>

*phase II. SD stable disease, OR objective response, OS overall survival, PFS progression free survival.
Discussion

- First study to describe alternative strategies in P-RCT

- Preliminary results
 - Delay in PubMed
 - Randomized Controlled Trial [Ptype]
 - ~ 250 abstracts, 2014 year
Discussion

- Majority of cancer “Treatment” trials use alternatives strategies to classical 1:1 P-RCT
 - “Placebo only” rare
 - Advanced disease/salvage therapy (8/9)
- Most frequent “alternative” strategies
 - Add-on (70%)
 - Stopping rules (52%)
 - Unbalanced randomization (17%)
 - “Cross-over” (17%)
 - Patients access E after progression
 - Long-term outcomes (mortality) difficult to assess
 - Controversy: “Misguided” ethics? (Prasad V, Grady C, CCT 2014)
Discussion

Study aims

Factorial Dose-finding
Maintenance
Add-on
Unbalanced randomization
Adaptive/stopping rule

Patient benefit

"Cross-over"

Add-on
Unbalanced randomization
Adaptive/stopping rule
Conclusion

- Alternatives to 1:1 placebo “only” RCT are very frequent
 - Address specific scientific questions
 - Try to address ethical tension of placebo in cancer patients

- Some more analysis needed
 - Evolution?
 - Ethical/scientific balance for “cross-over” trials
Aknowledgement

- C Grady, L Colloca (Dept of Bioethics, NIH, Bethesda, USA)
- T Fojo (National Cancer Institute, NIH, Bethesda, USA)
- I Tannock (Princess Margaret Cancer Centre, Toronto, Canada)

Reference

Fin