Impact of covariate misclassification on the power and type I error in clinical trials using covariate-adaptive randomization

LIQIONG FAN
SHARON D. YEATTS
WENLE ZHAO

MEDICAL UNIVERSITY OF SOUTH CAROLINA
DEPARTMENT OF PUBLIC HEALTH SCIENCE
DATA COORDINATION UNIT
Properties of covariate-adaptive randomization

- Well balance important prognostic covariate
- More generalizable and convincing result
- Increase power for subgroup analysis
- Require correct specification of analysis model for hypothesis testing

• Covariate adjustment during analysis
 - Type of analysis: model based
 - Type of outcome: Dichotomized
 - Covariate adjustment in logistic regression
 - Precision
 - Efficiency

• Motivation
 ○ Interventional Management of Stroke III (IMS III)
 ▪ Stratified biased-coin randomization: Stroke severity
 ▪ Misclassification Rate: 2%, non-differential
 ▪ Primary analysis: True severity VS. Randomized severity
 ○ High-Dose Deferoxamine in Intracerebral Hemorrhage (Hi-DEF)
 ▪ Stratified biased-coin randomization: time from symptom onset to treatment
 ▪ Misclassification Rate: 27.3% and 6.3%, differential
 ▪ Primary analysis: Anticipated time window VS. Actual time window
• Impact of adjusting with misclassified covariates under covariate adaptive randomization.

IMS III

<table>
<thead>
<tr>
<th>NIHSS STRATUM (RANDOMIZED)</th>
<th>NIHSS STRATUM (ACTUAL)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NIHSS 19 OR LOWER</td>
<td>NIHSS 20 OR HIGHER</td>
</tr>
<tr>
<td>N</td>
<td>% Randomized</td>
<td>% Randomized</td>
</tr>
<tr>
<td>448</td>
<td>98.03%</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>2.01%</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>1.97%</td>
<td>97.99%</td>
</tr>
</tbody>
</table>

Hi-DEF

<table>
<thead>
<tr>
<th>TIME WINDOW (RANDOMIZED)</th>
<th>TIME WINDOW (ACTUAL)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual <= 12 hours</td>
<td>Actual > 12 hours</td>
</tr>
<tr>
<td>N</td>
<td>% Anticipated</td>
<td>% Anticipated</td>
</tr>
<tr>
<td>Anticipated <= 12 hour</td>
<td>8</td>
<td>72.7%</td>
</tr>
<tr>
<td>Anticipated > 12 hours</td>
<td>15</td>
<td>93.8%</td>
</tr>
<tr>
<td></td>
<td>6.3%</td>
<td>27.3%</td>
</tr>
</tbody>
</table>
Method

- **Simulation**
 - Regression based analysis: Logistic regression
 - 1 prognostic covariate: subject to misclassification
 - 1 perfect measured variable: treatment assignment
 - No interaction
 - Dichotomized outcome
 - Randomization schemes
 - Simple randomization
 - Covariate adaptive randomization:
 - Stratified Block Randomization
 - Stratified Biased-coin Randomization
Method

- Simulation
 - Scenarios
 - Fixed control group rate (40%) and treatment group rate (50%)
 - Varied covariate effect: -3 to +3 (OR: 0.064-23.2)
 - Varied misclassification rate: 0% to 40%
 - Type of misclassification: non-differential
Method

- Simulation
 - Models compared
 - Unadjusted model
 - Model adjusted with misclassified covariate
 - Model adjusted with corrected covariate
 - Operating characteristics evaluated
 - Bias
 - Power
 - Type I error rate
Result-Bias

Simple Randomization

Covariate adaptive Randomization

L. Fan, SD. Yeatts, W. Zhao; MUSC

Society for Clinical Trials, May 2014
Simple Randomization

Covariate adaptive Randomization

Result-Power

L. Fan, SD. Yeatts, W. Zhao; MUSC
Result-Type I error Rate

Simple Randomization

Covariate adaptive Randomization

L. Fan, SD. Yeatts, W. Zhao; MUSC
Conclusion

- Impact on the estimate of treatment effect
 - Direction: Bias towards Null
 - Same direction of “bias” caused by unadjusting covariate
 - Adjusted estimate VS. unadjusted estimate
 - Magnitude
 - Misclassification rate: about 30% misclassification is almost the same as not adjusting the covariate.
 - The covariate effect on the outcome given the treatment effect

Conclusion

- Impact on power for detecting treatment effect
 - Randomization schemes do not have effect on power
 - Adjusting with corrected covariate minimize the power loss due to study design
 - The amount of power loss
 - Misclassification rate
 - Covariate effect on the outcome given the treatment
Conclusion

- **Impact on type I error rate**
 - Simple randomization: maintained
 - Covariate-adaptive randomization
 - Adjusting with corrected covariate: maintained
 - Adjusting with misclassified covariate: maintained
 - Without adjusting covariate: conservative
Discussion

- Under covariate adaptive randomization, adjusting randomized covariate is always recommended for final analysis
- Randomization scheme does not have an “add-on” effect on bias and power loss caused by covariate misclassification
- Attention should be drawn to correct the bias in estimating the effect of treatment and sample size reassessment with the presence of covariate misclassification
Questions?