The Durability of Vaccine Efficacy on the Incidence of Herpes Zoster Provided by ZOSTAVAX

Xiaoming Li1, Jane Zhang2, Robert Betts3, Vicki A. Morrison4, Lawrence Gelb5, Ruifeng Xu1, Erik J. Dasbach1, James M. Pellissier1, Gary Johnson2, Ivan S.F. Chan1

1 Merck Research Laboratories, 351 N. Sumneytown Pike, North Wales, PA
2 CSPCC, VA Connecticut Healthcare System, West Haven, CT
3 University of Rochester, Rochester, NY
4 Minneapolis VAMC and University of Minnesota, Minneapolis, MN
5 Washington University, St Louis, MO

May 18, 2011
SCT Annual Meeting
Vancouver, BC Canada
Outline

• Introduction

• The Shingles Prevention Study (SPS) and Short Term Persistent Study (STPS)

• Observed results on vaccine efficacy (VE) on incidence of herpes zoster (HZ) from SPS and STPS

• Statistical models on the durability of VE on HZ

• Discussions
Introduction

• ZOSTAVAX was first shown to be efficacious in preventing HZ, PHN, and lowering HZ BOI in persons ≥60 years of age in the SPS (Oxman et al 2005)

• It is critical to consider the durability of VE on incidence of HZ, when assessing the long-term cost-effectiveness of ZOSTAVAX

• Predicted mean duration of protection for persons ≥60 years of age (at vaccination) ranged from 12 years to lifelong, based on the SPS (Pellissier et al 2007)

• Additional data from the STPS is available since then (Schmader et al 2008)

• An alternative methodology for evaluating the durability of VE on HZ will be discussed
SPS and STPS

• SPS: a randomized, double-blind, placebo-controlled trial of Oka/Merck zoster vaccine in 38,546 adults ≥60 years of age. Main efficacy endpoints considered include incidence of HZ, incidence of postherpetic neuralgia (PHN) and HZ burden-of-illness (HZ BOI). Subjects were followed for ~4 years post vaccination, till September 2003.

• STPS: was initiated to collect extended follow-up on the persistence of the zoster vaccine efficacy; a subset (14,270) of consenting SPS subjects (7320 vaccine, 6950 placebo recipients) were followed in an extended period covering 3.5 to 7 years post vaccination.
Vaccine Efficacy Results: Statistical Analysis of Annual Incidence of HZ Cases (SPS + STPS)

<table>
<thead>
<tr>
<th>Time Period Since Randomization† (Years)</th>
<th>Zoster Vaccine (N = 19270)</th>
<th>Placebo (N = 19276)</th>
<th>Vaccine Efficacy for Incidence of HZ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Follow-Up Time (Person-Years)</td>
<td>Observed Incidence Rate of HZ (Per 1000 Person-Years)</td>
<td>Total Follow-Up Time (Person-Years)</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>m</td>
<td>Follow-Up Time</td>
</tr>
<tr>
<td>Year 1</td>
<td>69</td>
<td>19254</td>
<td>17584</td>
</tr>
<tr>
<td>Year 2</td>
<td>102</td>
<td>19024</td>
<td>18869</td>
</tr>
<tr>
<td>Year 3</td>
<td>92</td>
<td>18692</td>
<td>15181</td>
</tr>
<tr>
<td>Year 4</td>
<td>49</td>
<td>11686</td>
<td>6264</td>
</tr>
<tr>
<td>Year 5</td>
<td>26</td>
<td>7178</td>
<td>3180</td>
</tr>
<tr>
<td>Year 6</td>
<td>48</td>
<td>7085</td>
<td>4848</td>
</tr>
<tr>
<td>Year 7</td>
<td>12</td>
<td>4054</td>
<td>2136</td>
</tr>
<tr>
<td>Year 8</td>
<td>1</td>
<td>542</td>
<td>112</td>
</tr>
</tbody>
</table>

† Randomization into the SPS.
N = Number of subjects randomized.
n = Number of evaluable HZ cases that occurred during the time period in the pooled population.
m = Number of subjects followed during the time period in the pooled population.
Vaccine Efficacy Results: Statistical Analysis of Incidence of HZ Cases by Age Group (SPS+STPS)

<table>
<thead>
<tr>
<th>Age Group (Years)</th>
<th>Zoster Vaccine (N = 19270)</th>
<th>Placebo (N = 19276)</th>
<th>Vaccine Efficacy with Respect to HZ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>m</td>
<td>Total Follow-Up Time (Person-Years)</td>
</tr>
<tr>
<td>60 to 69</td>
<td>168</td>
<td>10370</td>
<td>37213</td>
</tr>
<tr>
<td>≥70</td>
<td>231</td>
<td>8884</td>
<td>30957</td>
</tr>
</tbody>
</table>

N = Number of subjects randomized.

n = Number of evaluable HZ cases in the respective age groups of the pooled population.

m = Number of subjects in the respective age groups of the pooled population.
Observation of the Vaccine Efficacy Results

• Vaccine Efficacy on HZ may potentially be affected by time since vaccination, as well as age.

• Define waning effect as decrease in vaccine efficacy due to time since vaccination (independent of age).

• **Question:** Is the decrease in VE over time observed due to time since vaccination or aging, or both?

• When age at vaccination is used, the age and time effects may be confounded with each other. Need to evaluate these two potential effects separately.

• **Concurrent age** can be used, which is defined as the current age at follow-up.

• **Objective:** To evaluate the durability of VE on HZ based on data from the SPS as well as STPS, using concurrent age, instead of age at vaccination.
Investigation of the Age and Waning Effects on VE

- Data: Combination of the SPS and STPS data
- Follow-up Data Handling: subject follow-up data are parsed into different bins defined by (concurrent) age and year (from vaccination)
- Model Used: Poisson regression with number of HZ cases in each bin as the dependent variable, follow-up time in the bin as off-set parameter and the following potential independent variables
 - Age (concurrent)
 - Year since vaccination
 - Whether in 1st year post vaccination
 - Treatment
 - Treatment x Age (concurrent)
 - Treatment x Whether in 1st year post vaccination
 - Treatment x Year since vaccination
Interpretation of the Model Parameter Estimates

- Treatment (ZOSTAVAX vs. placebo): exponential of the parameter estimate indicates the risk ratio (of developing HZ) between ZOSTAVAX and placebo, after adjusting for all other parameters.

- Treatment by Age (or year) interaction: exponential of the parameter estimate indicates the relative change in the risk ratio (of HZ) between ZOSTAVAX and Placebo per year of age (or year of time since vaccination), after adjusting for all other parameters.

- Note that Vaccine Efficacy = 1 – Risk Ratio

- A positive (or negative) parameter estimate of the interaction term between a covariate (age or time) and treatment indicates that risk ratio between ZOSTAVAX and placebo increases (or decreases) with increasing covariate value.
Poisson Regression Models: Parameter Estimate (p-Value)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Model I</th>
<th>Model II</th>
<th>Model III</th>
<th>Model IV</th>
<th>Model V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concurrent Age*</td>
<td>0.0075 (0.189)</td>
<td>0.0042 (0.472)</td>
<td>0.0035 (0.544)</td>
<td>0.0043 (0.470)</td>
<td>0.0043 (0.461)</td>
</tr>
<tr>
<td>Time Since Vac.</td>
<td></td>
<td>0.0680 (0.005)</td>
<td>0.0816 (<0.001)</td>
<td>0.0744 (0.017)</td>
<td>0.0726 (0.002)</td>
</tr>
<tr>
<td>1st Year Post Vac</td>
<td></td>
<td></td>
<td></td>
<td>-0.0368 (0.740)</td>
<td>-0.0327 (0.745)</td>
</tr>
<tr>
<td>Treatment</td>
<td>-1.2337 (<0.001)</td>
<td>-1.3151 (<0.001)</td>
<td>-1.2445 (<0.001)</td>
<td>-1.4290 (<0.001)</td>
<td>-1.4273 (<0.001)</td>
</tr>
<tr>
<td>Treatment by Concurrent Age</td>
<td>0.0414 (<0.001)</td>
<td>0.0392 (<0.001)</td>
<td>0.0410 (<0.001)</td>
<td>0.0390 (<0.001)</td>
<td>0.0389 (<0.001)</td>
</tr>
<tr>
<td>Treatment by Time Since Vac.</td>
<td></td>
<td>0.0322 (0.390)</td>
<td></td>
<td>-0.0042 (0.929)</td>
<td></td>
</tr>
<tr>
<td>Treatment by 1st Year Post Vac</td>
<td></td>
<td></td>
<td></td>
<td>0.2776 (0.153)</td>
<td>0.2677 (0.093)</td>
</tr>
<tr>
<td>Deviance</td>
<td>489.2</td>
<td>469.7</td>
<td>470.5</td>
<td>467.3</td>
<td>467.3</td>
</tr>
</tbody>
</table>

(age-59) is applied
Vaccine Efficacy Calculation by Different Models

Model I:
\[VE = 1 - e^{-1.2337 + 0.0414 \times (Age - 59)} \]

Model II:
\[VE = 1 - e^{-1.3151 + 0.0392 \times (Age - 59) + 0.0322 \times YearSinVac} \]

Model III:
\[VE = 1 - e^{-1.2445 + 0.0410 \times (Age - 59)} \]

Model IV:
\[VE = 1 - e^{-1.4290 + 0.0390 \times (Age - 59) - 0.0042 \times YearSinVac + 0.2776 \times I_{\geq 1 \text{Year}}} \]

Model V:
\[VE = 1 - e^{-1.4273 + 0.0389 \times (Age - 59) + 0.2677 \times I_{\geq 1 \text{Year}}} \]
Example of Predicted/Extrapolated Vaccine Efficacy Profile by Age

Vaccination at Age 60

Vaccination at Age 70
Discussions

• There is a robust statistically significant age effect on VE.

• The effect of time since vaccination on VE (waning effect) is not statistically significant, which may potentially be due to the fact that the duration of follow-up is ~7 years (instead of a longer period). Most of the decline in VE over time may be due to the initial drop in VE during the 1st year post vaccination.

• It is difficult/unethical to have a long-term placebo-controlled efficacy follow-up in a clinical trial setting post licensure (size and duration of SPS/STPS is unprecedented).

• While all five models fit the data well, none is perfect. And they provide a reasonable range for the durability of VE.

• It is critical to consider the durability of VE on HZ, along with HZ burden-of-illness (BOI) and postherpetic neuralgia (PHN), when assessing the long-term cost-effectiveness of ZOSTAVAX. While only HZ is considered here, clinical data indicated the durability of VE on HZ BOI and PHN.
References

