Calculating and Presenting Conditional Power at Interim Looks for an Adjudicated Time to Event Outcome

Presenter: Susan F. Assmann, Ph.D.

Co-Author: Eric Gerstenberger, MS

Sponsored By: National Heart Lung and Blood Institute (NHLBI)
TOPCAT Trial

- TOPCAT: International double-blind RCT comparing spironolactone to placebo for patients with heart failure symptoms and preserved ejection fraction

- Primary outcome: Time from randomization to first occurrence of
 - Heart Failure Hospitalization
 - Aborted Cardiac Arrest
 - Cardiovascular Death

- These components all undergo adjudication
Unconditional Power

- Depends on parameters such as
 - Sample size
 - Accrual timeline and length of additional follow-up
 - Assumed event rates in each treatment group
 - Assumed loss rates

- Does not depend on outcome data observed during the actual study
Conditional Power

- Calculated at an interim look
- Assesses the probability of reaching a statistically significant treatment group difference by the end of the study
- **Does** take into account currently observed study data
- Makes assumptions about event rates for remainder of study
Conditional Power

- Two most common ways of calculating conditional power:
 - Assume observed rates in each treatment arm continue for remainder of study
 - Assume future event rates in each treatment arm are the rates used in designing the study
Adjudication of Outcomes

- Many multi-site studies have an independent Clinical Endpoints Committee (CEC)
- CEC adjudicates whether each reported event meets study criteria for the outcome
- At end of study, only events meeting study criteria are included in primary analysis
Issue for Conditional Power Calculation

- Adjudication takes time!
- At the interim look, some reported events still pending adjudication
- “Observed” event rates in the treatment groups are not fully known at the time conditional power is calculated
Simulation Approach for Estimating Conditional Power

- For each replication...
- Randomly decide which pending events to count as actual events
- Randomly select future event and censoring times
- Calculate if significant difference at end of study
Simulation Approach for Estimating Conditional Power

- Repeat simulation many times
- Estimated conditional power = percentage of simulated studies in which a statistically significant difference is found
- If true percentage is 85%, need 5000 replications for confidence interval width +/- 1%
Hypothetical Study for Examples

- Designed for 85% power if true 3-year event rates are 20% in Control group and 16% in Active group
- 2 year accrual, 2 additional years follow-up
- 3-year loss rate 10%
- Interim looks at 1/3 and 2/3 information
Example 1: Kaplan-Meier Plots at 1st Interim Look (NOT actual TOPCAT data)

Including All Confirmed & Pending Events

Including Only Confirmed Events
What are the “Observed” Outcome Data?

- Counting all confirmed & pending events, projected 3-year rates 22.5% in Group 1, 18.6% in Group 2
- Counting only confirmed events, projected 3-year event rates 18.6% in Group 1, 15.1% in Group 2
- What do we assume has happened so far?
Randomly Choose “Observed” Data

- For each subject with confirmed outcome, count as true event
- For each subject lost from study with no confirmed or pending outcome, count as censored on loss date
- For each subject with “pending” status, randomly decide whether to analyze the pending event as confirmed or not confirmed, using “confirmation proportion” from assigned treatment group
Confirmation Proportions in Example 1

- **Treatment Group 1 (n=1715)**
 - 109 with confirmed events, 25 with pending events, 24 with events not meeting criteria
 - 109/133 or 82.0% of adjudicated events met the criteria

- **Treatment Group 2 (n=1714)**
 - 87 with confirmed events, 22 with pending events, 19 with events not meeting criteria
 - 87/106 or 82.1% of adjudicated events met the criteria
Simulate Future Data – Enrolled Subjects

For each subject still in study, but with no reported event being treated as confirmed

- Randomly choose time from data freeze to actual event (Can use either best estimates of observed rates, or pre-specified rates)
- Randomly choose time from data freeze to loss date
- Calculate follow-up time based on minimum of event date, loss date, or end date for entire study
- If event date occurs first, analyze as actual event
- Otherwise, analyze as censored
Simulate Future Data – Future Subjects

- For each subject yet to be enrolled
 - Choose enrollment date based on accrual projections
 - Randomly choose time from enrollment to actual event
 - Randomly choose time from enrollment to loss date
 - Calculate follow-up time based on minimum of event date, loss date, or end date for study
 - If event date occurs first, analyze as actual event
 - Otherwise, analyze as censored
Example 1, 5000 Replications

Assumed 3-year event rates during remainder of study

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Estimated Conditional Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best estimates of event rates continue forward</td>
<td>21.8%</td>
<td>18.0%</td>
<td>84.5%</td>
</tr>
<tr>
<td>Group 1 is Control, initial assumptions apply</td>
<td>20%</td>
<td>16%</td>
<td>88.9%</td>
</tr>
<tr>
<td>Group 2 is Control, initial assumptions apply</td>
<td>16%</td>
<td>20%</td>
<td>9.4%</td>
</tr>
</tbody>
</table>

- If DSMB does not want to know whether Group 1 is Control or Experimental, must report both line 2 and line 3
- Otherwise, could give away which group is Control, based on how the design assumption affects conditional power
Example 1: Kaplan-Meier Plots at 1st Interim Look
(NOT actual TOPCAT data)

Including All Confirmed & Pending Events

Including Only Confirmed Events
Example 2: Kaplan-Meier Plots at 1st Interim Look (NOT actual TOPCAT data)

Including All Confirmed & Pending Events

Including Only Confirmed Events
Example 2, 5000 Replications

<table>
<thead>
<tr>
<th>Assumed 3-year event rates during remainder of study</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Estimated Conditional Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best estimates of event rates continue forward</td>
<td>20.8%</td>
<td>21.2%</td>
<td>2.4%</td>
</tr>
<tr>
<td>Group 1 is Control, initial assumptions apply</td>
<td>20%</td>
<td>16%</td>
<td>40.9%</td>
</tr>
<tr>
<td>Group 1 is Experimental, initial assumptions apply</td>
<td>16%</td>
<td>20%</td>
<td>54.8%</td>
</tr>
</tbody>
</table>
Approach Can Easily Incorporate…

- Variations in enrollment rates over time
- Subjects not followed until end of entire study (e.g. visits occur every 6 months, and subjects followed only until last scheduled visit)
Summary

- Adjudication generally is not immediate
- “Observed” data not completely known at time of interim look
- Using confirmation proportions in each group provides estimate of currently “observed” event rates
Summary

- Simulation approach for outcomes pending adjudication, future outcome events, future censoring
- Can easily incorporate more complicated situations
- For blinded studies, important to provide conditional power for both possible treatment assignments
E-mail address: sassmann@neriscience.com

NERI website: neriscience.com