Adverse Event Signal Detection
Overall Comparisons, Future Projections and False Discoveries

Jing Huang¹, Julie Ma², Jeetu Ganju¹
¹Amgen Inc., ²Gilead Sciences

SCT 2011
Example

• Phase 3 trial:
 449 AEs observed, N_A and N_B about 500

• 50 AEs have z-values > 1.96
 Under the null, expect 11 AEs ($= .025 \times 449$)
Question of Interest

• How many more subjects would experience AEs if trial period is extended?
Outline

• **Step 1**: graphically compare z scores with null distn

• **Step 2**: flag AEs by controlling FDR

• **Step 3**: for each AE, project number of subjects with a given AE into the future, using ALL AE data

• **Step 4**: Re-flag AEs by controlling FDR

• Pay attention to new AEs flagged. Informal inference.
Example: Graphical Comparison

- Large data set density
- Standard normal density

Shift to the right.
Outline

• **Step 1**: graphically compare z scores with null distn

• **Step 2**: flag AEs by controlling FDR

• **Step 3**: for each AE, project number of subjects with a given AE into the future, using ALL AE data

• **Step 4**: Re-flag AEs by controlling FDR

• Pay attention to new AEs flagged. Informal inference.
FDR: q-values (Storey’s FDR)

- FDR: false discovery rate
- q-value is to FDR what p-value is to PCER
- Interpretation: Suppose for AE i q-value = 0.01. Then we expect 1% of AEs with p-value < 0.01 to be false positives

Example data set: 29/449 AEs (6.5%) had q-values < 0.025
Outline

• **Step 1:** graphically compare z scores with null distn

• **Step 2:** flag AEs by controlling FDR

• **Step 3:** for each AE, project number of subjects with a given AE into the future, using ALL AE data

• **Step 4:** Re-flag AEs by controlling FDR

• Pay attention to new AEs flagged. Informal inference.
Projections: New Idea

Group A:

\[\text{# subjects with AE at t2} = \text{# at t1} + \text{Project # in (t2 – t1) under null} \]

\[+ \text{Project # in (t2 – t1) undernonnull} \]

Take weighted average

New Approach

\[\text{# at t2} = \text{# at t1} + w \times \text{# in (t2-t1) under null} \]

\[+ (1-w) \times \text{# in (t2-t1) under nonnull} \]

\[w = P(\text{null true for AE i | z_i}) \]

(Efron’s empirical Bayes idea, JASA 2004)
of Subj with AE i

<table>
<thead>
<tr>
<th>Treatment</th>
<th>T1</th>
<th>T2 = T1 + delta</th>
<th>Under H$_0$</th>
<th>Under H$_1$</th>
<th>Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20</td>
<td></td>
<td>33</td>
<td>36</td>
<td>34</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td></td>
<td>23</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>A - B</td>
<td>10</td>
<td></td>
<td>10</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>$w_i = 0.7$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No. with event under H$_0$ or H$_1$ is modeled given observed data

$w_i = P$(null true for AE i | z_i)
Outline

• **Step 1:** graphically compare z scores with null distn

• **Step 2:** flag AEs by controlling FDR

• **Step 3:** for each AE, project number of subjects with a given AE into the future, using ALL AE data

• **Step 4:** Re-flag AEs by controlling FDR. Pay attention to new AEs flagged. Informal inference.
Example data set: 24 mth and 30 mth Z-values

- 29 significant AEs at the end of study
- Additional 2 flagged by projection
Reality Check: Projecting from 20 to 24 Months

- Assumed survival distribution is exponential.

- Did not account for subjects who were censored between Months 20 and 24.
Reality Check: Projecting from 20 to 24 Months

Comparison of Z-scores Based on Observed Data and Projected Data

Correlation = 0.9894
Recap: Key Elements

• Compare observed data with N(0,1)

• Weight each AE to reflect the null and non-null simultaneously (empirical Bayes)

• Project # with AEs in the future: gain information

• q-values: apply to observed time and future time. Pay attention to additional AEs flagged
Pros and Cons of Method

• Pros
 - Helps with: “what would happen if trial period extended?”
 - Projection for AE i based on ALL AE data

• Cons
 - Assumes all subjects risk-free at observed time are at risk until future time
 - Doesn’t work with expected or acute events

• Additional details in “Adverse Event Signal Detection: Overall Comparisons, Future Projections and False Discoveries” (J Ma, J Ganju, J Huang). Submitted for publication.